
Hermes: An Efficient Federated Learning Framework for
Heterogeneous Mobile Clients

Ang Li
1
, Jingwei Sun

1
, Pengcheng Li

2
*, Yu Pu

2
, Hai Li

1
, Yiran Chen

1

1
Department of Electrical and Computer Engineering, Duke University

2
Alibaba DAMO Academy

1
{ang.li630, jingwei.sun, hai.li, yiran.chen}@duke.edu,

2
{landy0220@gmail.com, y.pu@@alibaba-inc.com}

ABSTRACT
Federated learning (FL) has been a popular method to achieve dis-

tributed machine learning among numerous devices without shar-

ing their data to a cloud server. FL aims to learn a shared global

model with the participation of massive devices under the orches-

tration of a central server. However, mobile devices usually have

limited communication bandwidth to transfer local updates to the

central server. In addition, the data residing across devices is intrin-

sically statistically heterogeneous (i.e., non-IID data distribution).

Learning a single global model may not work well for all devices

participating in the FL under data heterogeneity. Such communica-

tion cost and data heterogeneity are two critical bottlenecks that

hinder from applying FL in practice. Moreover, mobile devices usu-

ally have limited computational resources. Improving the inference

efficiency of the learned model is critical to deploy deep learning

applications on mobile devices. In this paper, we present Hermes –
a communication and inference-efficient FL framework under data

heterogeneity. To this end, each device finds a small subnetwork by

applying the structured pruning; only the updates of these subnet-

works will be communicated between the server and the devices.

Instead of taking the average over all parameters of all devices as

conventional FL frameworks, the server performs the average on

only overlapped parameters across each subnetwork. By applying

Hermes, each device can learn a personalized and structured sparse
deep neural network, which can run efficiently on devices. Experi-

ment results show the remarkable advantages of Hermes over the
status quo approaches. Hermes achieves as high as 32.17% increase

in inference accuracy, 3.48× reduction on the communication cost,

1.83× speedup in inference efficiency, and 1.8× savings on energy

consumption.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; • Computing methodologies→Machine learning.
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1 INTRODUCTION
More and more intelligent applications based on deep neural net-

works (DNNs) [28] have been developed for mobile devices, such as

image recognition [56], video analytics [42], object detection [34],

etc. The key to achieving the full promise of these applications is to

train DNNs with a massive amount of data. Thus, when training a

DNN locally on a mobile device with only limited data, it is unlikely

to obtain desirable inference accuracy. A straightforward solution

is to transmit data frommany mobile devices to a central server and

conduct centralized training, which raises severe privacy preser-

vation concerns considering the possibility of untrusted servers

and/or insecure communication.

Recently, federated learning (FL) [36] emerges as a popular dis-

tributed machine learning paradigm for its advances in addressing

the above privacy concerns and solving the problem of data si-

los [30]. In FL, a shared global model is trained in a decentralized

manner, under the orchestration of a central server. Specifically,

in every communication round, each participating device down-

loads the current model from the central server and then computes

an updated model locally with its own data. These locally trained

models are then aggregated by the central server, i.e., averaging

weights. Finally, a single consolidated and improved global model

is sent back to devices.

With the prevalence of FL, the inherently non-independent iden-

tical (non-IID) data distribution across devices becomes a major

concern. For example, Google applies FL to make emoji predic-

tions [41] in Gboard mobile keyboards. When mobile clients are

tied to particular geo-regions, the distribution of data labels can

be significantly different across clients – certain emojis are used

by one demographic but not others. Prior works [27] have demon-

strated that the global model learned via FL cannot generalize well

for all devices. Communication cost is another critical bottleneck

for applying FL to mobile devices, as the communication resource

is either very limited or expensive [30]. Therefore, such data het-

erogeneity (i.e., non-IID) and communication cost are two critical

bottlenecks to hinder the development of FL.

https://doi.org/10.1145/3447993.3483278
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Status Quo and Limitations. Many studies have been con-

ducted to mitigate the data heterogeneity through FL personaliza-

tion. These approaches can be divided into different categories,

including fine-tuning [4, 12, 23, 25, 39, 51], multi-task learning [46],

and contextualization [35]. Most of these techniques involve two

separate steps where a global model is learned collaboratively in

the first step, and then the global model is fine-tuned to the per-

sonalized model by each device using its local data. Such two-step

methods inevitably incur extra computational overhead [23].

Alleviating the communication cost in FL has also been stud-

ied. The common idea is to compress the communication between

devices and the central server: (1) quantization methods [2, 6, 9,

19, 24, 44, 54, 55] aim to reduce the bit number of elements in the

transferred data; (2) sparsification methods [1, 11, 21] transmit only

a subset of elements of the communicated data; and (3) hybrid
methods [5, 22, 33, 47] combine quantization and sparsification.

However, very few approaches have been proposed to address

the data heterogeneity and communication efficiency simultane-

ously. LG-FedAvg [32] combines local representation learning and

global federated training, which needs two-step learning to achieve

personalization. In particular, LG-FedAvg splits the model parame-

ters into two parts: local parameters (i.e., the first several layers)

and global parameters (i.e., the last several layers). In the first step,

the devices update and communicate the whole model with the

central server following FedAvg [36] scheme. In the second step, the

devices update the whole model but only communicate the global

parameters with the central server. In doing so, each device can

learn personalized local parameters for feature extraction. How-

ever, LG-FedAvg can only reduce the communication in the second

step, and the partition of the model is performed in a heuristic way

rather than a data-driven manner, which may lead to sub-optimal

performance. Furthermore, LG-FedAvg is evaluated in an unrealistic
FL setting, where each device owns sufficient training data (i.e., 200

images/class of MNIST and CIFAR-10). Under such a setting, a de-

vice can obtain good accuracy through local training, which indeed

contradicts the motivation of FL. For instance, the classification ac-

curacy of a locally trained model by each device can achieve 97.17%

on MNIST, while its counterpart using LG-FedAvg [32] increases

the performance merely 1.49%. HeteroFL [10] adaptively allocates

submodels to devices based on their varying computation and com-

munication capabilities. Each device only trains and communicates

its submodel, and hence both communication and computation

efficiency in federated training can be improved. But the submodel

is determined by the computation capability of each device rather

than the local data, which makes the submodel allocation less flexi-

ble. SFSL is a secure federated submodel learning framework for

recommender system [40], where the submodel can be identified

by a user’s historical data on an e-commerce platform. Each de-

vice only needs to train and transmit the submodel, and hence

the communication and computation efficiency can be improved

in FL. However, this specific federated submodel learning scheme

is designed for the recommender system with special input data

structure, SFSL may not be applicable to other applications due to

varying models and input data formats. More importantly, none of

the existing approaches take the computation efficiency of inference
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Figure 1: The high-level view of Hermes.

into account when designing the FL framework, which is a cru-

cial factor impeding the deployment of FL on resource-constrained

mobile devices.

Challenges and Our Solutions. In this work, we propose Her-
mes, a FL framework that can simultaneously (1) reduce the commu-
nication cost, (2) improve the computation efficiency for inference,

and (3) learn a personalized model for each participating device.

The key idea of Hermes is that, instead of optimizing the base

neural network in conventional FL frameworks, each device will

train to find a subnetwork that can generalize well for its local data

and only the parameters of the subnetwork will be communicated

between devices and the server. The key intuition behind Hermes
is inspired by the “lottery ticket hypothesis" [14], which finds that

an optimal substructure of the original network can be identified

through pruning and such a subnetwork can reach similar accu-

racy as the original network. In particular, the process of finding

such a subnetwork on a device is driven by its local data, and the

devices holding similar local data will share similar subnetwork

architectures and more overlapped parameters. By exploiting the

subnetwork, both the communication efficiency and inference effi-

ciency can be significantly improved in Hermes due to the compact

size of the subnetwork. In addition, the subnetwork should be able

to learn representations embedded in local data, such that the per-

sonalized subnetwork can achieve desired inference accuracy on

local data. Therefore, Hermes is able to effectively achieve person-

alization while jointly improving the efficiency of communication

and inference.

However, the design of Hermes involves two key technical chal-

lenges. (i) The first challenge lies in designing a local training

method that enables each device to learn a subnetwork that can

embed the personalized information of local data while jointly im-

proving communication and inference efficiency. (ii) Considering

the non-IID data distribution across devices, the subnetworks are

heterogeneous across devices, i.e., only parts of these subnetworks

are overlapped across devices. However, in the conventional FL

frameworks, the local model of each device shares the same archi-

tecture and the server can directly performs the aggregation on

all elements in each local model. Unfortunately, directly applying

the existing aggregation strategy will destroy the personalized in-

formation embedded in each subnetwork, potentially leading to

significant degradation in terms of inference accuracy. Therefore,

designing a specific aggregation strategy to maximally preserve

the personalization property of each subnetwork poses another

challenge.
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To address the first challenge, Hermes employs a novel local

training method which seeks a subnetwork within a base model

of each client during each communication round. This is done by

leveraging the structured pruning. Specifically, each device learns a

structured sparse subnetwork, and then communicates only the pa-

rameters of the subnetwork with the server in each communication

round. In doing so, both communication and inference efficiency

can be significantly improved due to the compact size of the sub-

network. In addition, the structured pruning is performed on local

data of each device, and hence the personalized information of local

data is inherently embedded into the subnetwork. The details of

addressing this challenge are presented in §3.2.

To tackle the second challenge, we design a personalization-
preserving aggregation scheme for Hermes. In particular, the pro-

posed aggregation method performs averaging on only intersec-

tions of subnetworks, i.e., overlapped parameters among each sub-

network, while keeping the remaining non-intersected elements

unchanged. Such an aggregation strategy will prevent the person-

alized parameters (i.e., non-intersected elements across the subnet-

works) of each subnetwork from being interfered by each other, and

hence the personalization property can be effectively preserved.

We describe the design of this aggregation strategy in §3.3.

Besides, we also consider a more realistic and challenging setting
in this work, where each device holds limited data (e.g., 5 sam-

ples/class in image classification application). Thus, the devices

cannot locally train a model with the desired inference accuracy

due to insufficient data. As Figure 1 illustrates, given a set of mobile

devices associated with heterogeneous data, Hermes enables each
device to learn a personalized and inference-efficient model in a

communication-efficient manner. Such a model can be deployed

for various deep learning applications, such as image classification,

human activity recognition, etc.

System Implementation and Experimental Results.We im-

plementedHermes and conducted a rich set of experiments to evalu-

ate its performance.We appliedHermes to develop three representa-
tive deep learning applications on smartphones. These applications

are developed based on three datasets that are widely used in com-

puter vision and mobile sensing community. In addition, we also

implemented four status quo approaches for comparisons, includ-

ing FedAvg [36], Top-𝑘 [1], Per-FedAvg [12], and LG-FedAvg [32].

Our results show that:

• Hermes outperforms the compared baselines, improving in-

ference accuracy by 0.53%-32.17% and reducing communica-

tion cost by 1.92×-3.48×.
• At runtime, the structured sparse and personalized model

that is learned usingHermes significantly outperforms those

trained with the baseline methods.Hermes achieves as much

as 1.83× speedup in inference latency, 70% reduction on

memory footprint and 1.8× savings on energy consumption.

Summary of Contributions. To the best of our knowledge,

Hermes is the first framework that achieves personalization while

jointly improving the efficiency of communication and inference

in FL. We also provide a theoretical convergence guarantee for our

framework. Hermes contributes novel techniques that address the
limitations in state-of-the-arts as well as the unique challenges in

FL under non-IID settings. We believe that our work represents

a significant step towards applying FL to heterogeneous mobile

clients.

2 BACKGROUND AND MOTIVATION
We will first discuss the background and necessity of personaliza-

tion of FL, and then present its communication bottleneck to show

the limitation of the state-of-the-art approaches, motivating the

design of the proposed Hermes as a result.

2.1 Background on Federated Learning
As numerous training data increasingly grows, FL is employed to

enable the distributed learning across a widespread set of devices

without local data sharing. A central server is often leveraged to

coordinate the objective of the global learning task, which can be

generally formulated as:

min

𝑾
𝑓 (𝑾 ) =

𝑁∑
𝑘=1

𝑛𝑘

𝑛
𝐹𝑘 (𝑾𝑘 ) = E𝑘 [𝐹𝑘 (𝑾𝑘 )] , (1)

where 𝑁 denotes the number of devices, 𝑛𝑘 the number of data sam-

ples on device 𝑘 , and 𝑛 =
∑𝑁
𝑘=1

𝑛𝑘 the number of all data samples.

The local objective function 𝐹𝑘 (Wk) measures the empirical risk

over local data distribution 𝐷𝑘 , where Wk is the model parameters

of device 𝑘 .

As an example, one of the most widely applied FL methods,

FedAvg [36] selects a subset of devices of size 𝐾 ≪ 𝑁 to conduct

model training in each communication round. Each selected device

trains its own local model using local data with the same learning

rate and number of local epochs and the optimizer of stochastic

gradient descent (SGD). Afterwards, each selected device transmits

its local model updateWk to the central server whereas these local

updates are averaged with weights {𝑝𝑘 } and merged into the global

copy of model with W =
1

𝐾

∑𝐾
𝑘=1

𝑝𝑘Wk.

2.2 Data Heterogeneity Enforces Model
Personalization

The primary incentive for devices to participate in FL is learning a

global model with better performance than learning locally. How-

ever, existing studies [18, 29, 36] have demonstrated that the model

trained locally oftentimes outperforms the globally learned model

when data heterogeneity appears (i.e., non-IID data distribution

across devices), which just neglects the motivation of FL. To show a

data point, we investigated the impact of data heterogeneity on the

conventional FL framework, by applying FedAvg to train a global

model using CIFAR-10 for 400 communication rounds with each

round involving 5 local epochs on each training device . In each

communication round, we select 20 devices for training and each

device holds two class of data with 20 samples per class, leaving

the rest configurations set the same as in [29]. Our tests show that

the globally trained model by FedAvg achieves the classification

accuracy of 47.67%, while the model that is carefully trained locally

can realize up to 65.44% of classification accuracy. Therefore, it is

of a great challenge to train a good, one-fits-all model working

consistently well for all devices with heterogeneous data, and we

must enforce the model personalization for high efficient FL.
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Figure 2: Communication cost of FedAvg and LG-FedAvg.

2.3 Communication Bottleneck
Another aspect to practically deploy FL is subject to the expensive

communication overhead between the central server and train-

ing devices, even though tons of endeavors made. The outstanding

method, LG-FedAvg [32] aims to improve communication efficiency

as well as model personalization simultaneously. To demonstrate its

significance, we experimentally compared FedAvg and LG-FedAvg

for training on CIFAR-10 for 500 communication rounds, respec-

tively, by measuring total data volume communicated between

devices and the central server. In each communication round, we as-

sume that there are 20 participating devices. We choose VGG16 [45]

and Inception-v4 [49] as the default model architectures.

As Figure 2 shows, the total communication volume is as high as

10.59 TB and 32.22 TB data for FedAvg to train VGG16 and Inception-

v4, respectively, incurring an unacceptable communication time

overhead and hence power energy consumption for mobile services.

Although reducing the communication cost by a significant amount

to 8.28 TB and 2.45 TB for the two models, LG-FedAVG remains

less than sufficient to be in good shape in practice. This work seeks

to address this expensive communication efficiency issue.

3 DESIGN OF HERMES
3.1 Overview
In this work, we propose Hermes – a personalized FL framework

that jointly improves the communication and inference efficiency.

Instead of learning a shared global model like conventional FL

frameworks, Hermes enables each participating device to obtain a

personalized model.

Figure 3 illustrates the architecture of the proposed Hermes
framework, which involves two key operations: learning local sub-
network on each device and performing the subnetwork aggregation
on the central server. In particular, at the beginning, the central

server initializes a dense network as the base model using random

parameters and then distributes it to the participating devices.

To support simultaneously learning personalized models and

reducing communication cost under data heterogeneity, we employ

the structured pruning method to enable each device to learn a

heterogeneous and structured-sparse subnetwork. Such a structure

heterogeneity of the subnetwork is attributed to the non-IID data

distribution across devices and embeds the personalized informa-

tion of the local data distribution on each device. Specifically, in

each communication round, a set of devices will be selected to

Device 1
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Figure 3: The overview of the Hermes framework.

participate in FL training. Instead of directly optimizing the local

model, each device incorporates a structured sparsity regulariza-

tion to learn a subnetwork when optimizing the local model ( 1 ).

Only such subnetworks are transmitted from devices to the cen-

tral server ( 2 ). Unlike communicating the local updates of the

full dense model in FedAvg, the communication efficiency can be

significantly improved due to the compact size of the subnetwork.

The central server performs the aggregation on the received

subnetworks. However, the subnetworks are heterogeneous across

devices and embed the personalized information of the local data

distribution, applying existing aggregation strategy (e.g., FedAvg)

to the subnetworks will destroy their personalization properties.

Therefore, we design a specific strategy for aggregating the subnet-

works such that shared knowledge can be learned across devices

while the personalization of each subnetwork can be effectively

preserved. Specifically, only the parameters that are intersected

across the subnetworks of devices are averaged while keeping the

remaining non-intersected parameters untouched ( 3 ). For exam-

ple, as Figure 3 shows, only the first two parts of the subnetworks

across 𝐷𝑒𝑣𝑖𝑐𝑒 1, 𝐷𝑒𝑣𝑖𝑐𝑒 2, and 𝐷𝑒𝑣𝑖𝑐𝑒 𝑁 , but the other parts of

each subnetwork are not overlapped with each other. Hence, the

aggregation is performed on only the first two parts (i.e., in brown

color) of these three subnetworks, but the other parts of each sub-

network is not changed. Afterwards, the updated subnetworks will

be distributed to each device ( 4 ). The above steps ( 1 - 4 ) repeat

until reaching the predefined number of communication rounds.

Finally, each device will obtain a personalized and structured-
sparse model ( 5 ). Due to the structured sparsity, the personalized
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model runs more efficiently on each device than a dense model,

thus significantly improving computation efficiency for inference.

Notations. Before diving into the details of learning the local

subnetwork and the personalization-preserving aggregation, we

first define the following notations used in this work. We denote

C = {𝐶1, . . . ,𝐶𝑁 } as 𝑁 available devices, where𝐶𝑘 denotes the 𝑘th

device; and S𝑐 ⊂ C as a set of selected devices in each training

round. Let𝑾 be the parameters of the base model on the global

server, and𝑾𝑘 represent the local model parameters of𝐶𝑘 . We also

use the superscript 𝑇 , e.g.,𝑾𝑇
, to represent the model parameters

learned in the 𝑇 th round. Each device 𝐶𝑘 also learns a local mask

𝑴𝑘 ∈ {0, 1} |𝑾𝑘 |
, which indicates the subnetwork identified via

applying the structured pruning. Therefore,𝑾𝑘⊙𝑴𝑘 that is a binary

mask denotes the parameters of the corresponding subnetwork at

device𝐶𝑖 . Given the data𝐷𝑘 held by𝐶𝑘 , we split𝐷𝑘 into the training

data 𝐷𝑡𝑟𝑎𝑖𝑛
𝑘

, validation data 𝐷𝑣𝑎𝑙
𝑘

, and test data 𝐷𝑡𝑒𝑠𝑡
𝑘

.

3.2 Learn Subnetwork for Joint Efficiency and
Personalization

Hermes differs existing FL frameworks in that each device learns a

sparse subnetwork and communicates such a subnetwork with the

central server only. The goal of seeking the sparse subnetwork is to

jointly improve the communication and inference efficiency while

achieving the personalization. Model pruning is a natural option to

help each device find the subnetwork using the local data, because

the key insight of pruning is to find the most significant parame-

ters for accurately making inference on training data. In addition,

the compact size of the subnetwork will be greatly helpful for im-

proving the communication and computation efficiency. There are

two different types of pruning techniques, i.e., unstructured prun-
ing [17] and structured pruning [53]. Figure 4 shows the difference

between these two pruning methods. Unstructured pruning is often

operated on the parameter level, offering the high flexibility and

generality for compression rate but requiring specific hardware

supports to realize the improvement of computation efficiency. On

the other hand, the structured pruning is usually performed in a

channel-wise or filter-wise manner. Even though it is less flexible

compared to unstructured pruning, it is very hardware-friendly for

improving the computation efficiency. Therefore, we employ the

structured pruning to learn the subnetworks during optimizing the

local models on devices.

Without loss of generality, we consider a convolutional neural

network as the local model on devices. When optimizing the local

model using SGD, each device aims to achieve channel-wise and

filter-wise sparsity for convolutional layers, row-wise and column-

wise sparsity for fully connected layers. Suppose the local model

𝑾 consists of𝑾𝑐𝑜𝑛𝑣 convolutional layers and𝑾𝑓 𝑐 fully connected

layers, the structured sparsity regularization for the local model𝑾
is formulated as:

𝑅(𝑾 ) = 𝑅𝑐𝑜𝑛𝑣 (𝑾 ) + 𝑅𝑓 𝑐 (𝑾 ),

𝑅𝑐𝑜𝑛𝑣 (𝑾 ) =
𝑾𝑐𝑜𝑛𝑣∑
𝑙=1

(
𝐹𝑙∑
𝑓𝑙=1

∥𝑾 (𝑙)
𝑓𝑙 ,:,:,:
∥𝑔 +

𝐶ℎ𝑙∑
𝑐ℎ𝑙=1

∥𝑾 (𝑙)
:,𝑐ℎ𝑙 ,:,:

∥𝑔),

𝑅𝑓 𝑐 (𝑾 ) =
𝑊𝑓 𝑐∑
𝑙=1

(
𝑅𝑜𝑤𝑙∑
𝑟𝑜𝑤𝑙=1

∥𝑾 (𝑙)𝑟𝑜𝑤𝑙 ,:
∥𝑔 +

𝐶𝑜𝑙𝑙∑
𝑐𝑜𝑙𝑙=1

∥𝑾 (𝑙)
:,𝑐𝑜𝑙𝑙
∥𝑔),

(2)
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Figure 4: Illustration of the difference between the
structured pruning and unstructured pruning. (a) The

parameter matrix representations of channels in a layer. (b)
The effect of the channel-wise structured pruning, where
the white and orange channels are the pruned ones and
retained ones, respectively. (c) The unstructured pruning

scheme.

where ∥ .∥𝑔 is the group Lasso [53], ∥𝑾 (𝑔) ∥𝑔 =

√
|𝑾 (𝑔) |∑
𝑖=1
(𝑾 (𝑔)

𝑖
)2, 𝐹𝑙

the number of filters in the 𝑙th convolutional layer,𝐶ℎ𝑙 the number

of channels in the 𝑙th convolutional layer, 𝑅𝑜𝑤𝑙 the number of rows

in the 𝑙th fully connected layer, 𝐶𝑜𝑙𝑙 the number of columns in the

𝑙th fully connected layer, and |𝑾 (𝑔) | the number of parameters in

𝑾 (𝑔) . After applying this structured sparsity regularization, the

training loss for mask optimization is formulated as:

𝐹 (𝑾 ) = 𝐹𝐷 (𝑾 ) + 𝜆𝑅(𝑾 ) (3)

where 𝐹𝐷 (𝑾 ) is the loss for the local data and 𝜆 is the coefficient of

the structured sparsity regularization. By optimizing the objective

function in Equation 3 using local data, each device can derive 𝑴
by identifying the zero-valued and non-zero valued parameters in

𝑾 . Specifically, the location that corresponds to the zero-valued or

non-zero valued in𝑾 will be marked as 0 and 1 in 𝑴 , respectively.

Given the 𝑇 th communication round, each participating device

downloads the corresponding subnetwork𝑾𝑇
𝑘

=𝑾 ⊙ 𝑴𝑇
𝑘
, where

𝑴𝑇
𝑘
is the mask that is determined in the (𝑇 − 1)th round using

Equation 3. First, the device evaluates𝑾𝑇
𝑘
on the local validation

data 𝐷𝑣𝑎𝑙
𝑘

. If the accuracy of the current subnetwork𝑾𝑇
𝑘
is better

than a predefined threshold 𝑎𝑐𝑐𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and the current pruning

rate 𝑟𝑇
𝑘
does not reach the target pruning rate 𝑟𝑡𝑎𝑟𝑔𝑒𝑡 , the device
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Figure 5: Illustration of the personalization-preserving
aggregation on the central server.

will prune the low-magnitude weights of𝑾𝑇
𝑘

using a fixed pruning

rate 𝑟𝑝 . After the structured pruning, the device can derive 𝑴𝑇+1
𝑘

which indicates the sparse structure for𝑾𝑇+1
𝑘

and embeds the data-

dependent features. Afterwards, the device performs mini-batch

training for several epochs using 𝐷𝑡𝑟𝑎𝑖𝑛
𝑘

based on𝑾𝑇
𝑘
⊙ 𝑴𝑇+1

𝑘
and

obtains the updated𝑾𝑇+1
𝑘

. In addition to sending the subnetwork

parameters𝑾𝑇+1
𝑘

to the server, each client also needs to transmit

the corresponding binary mask 𝑴𝑇+1
𝑘

to the server. Such a binary

mask helps the server identify the positions of pruned and remained

parameters accordingly. Note that the binary mask only uses 1 bit to

represent each model parameter, the additional communication cost

of sending the binary mask is ignorable compared to transmitting

the floating-point model parameters. Finally, the device transmits

𝑾𝑇+1
𝑘

and 𝑴𝑇+1
𝑘

to the server.

3.3 Personalization-Preserving Aggregation
In each communication round, the participating devices transmit

the subnetworks to the central server, where the aggregation is

performed on these subnetworks. However, existing FL methods

(e.g., FedAvg) perform the aggregation on all parameters of each

device’s local model, and hence directly applying these aggrega-

tion strategies will inevitably disrupt the personalization of the

subnetworks in Hermes.
Therefore, we design a novel aggregation strategy to preserve

the personalized property of the subnetworks. Specifically, we pro-

pose a personalization-preserving aggregation scheme where only

intersected parameters across the subnetworks are averaged while

keeping the non-intersected parameters unchanged. Then, the cen-

tral server sends the updated subnetworks back to devices accord-

ingly. Figure 5 shows one example of performing the proposed

aggregation method on one layer of two subnetworks, where each

layer consists of three channels. As Figure 5 illustrates, only the first

channel of Device 𝑖(in yellow) and Device 𝑗 (in blue) are intersected,

and hence the parameter of these two channels are averaged by

the proposed aggregation scheme. Because the third channel of

Device 𝑗 is pruned, there is no intersection of the third channel

between Device 𝑖(in yellow) and Device 𝑗 (in white). Therefore, the

third channel of Device 𝑖 will not be changed. After the aggregation,

Algorithm 1: Training Algorithm of Hermes.

Data: (𝐷1, . . . , 𝐷𝑁 ) where 𝐷𝑘 is the local data on 𝑘th device

Server Executes:
1 initialize the global model𝑾

2 for each round 𝑇 = 1, 2, . . . do
3 𝑘 ← max(𝑁 × 𝐾, 1) /* 𝑁 available devices,

random sampling rate 𝐾 */

4 𝑆𝑐 ← {𝐶1, . . . ,𝐶𝑘 } /* the selected 𝑘

participating devices indexed by 𝑘 */

5 for 𝐶𝑘 ∈ 𝑆𝑡 in parallel do
6 𝑾𝑇

𝑘
=𝑾𝑇 ⊙ 𝑴𝑇

𝑘
/* the subnetwork of 𝐶𝑘 */

7 𝑾𝑇+1
𝑘
← ClientUpdate(𝐶𝑘 ,𝑾𝑇

𝑘
)

8 𝑾𝑇+1 ← (aggregate {𝑾𝑇+1
𝑘
}) /* using the proposed

personalization-preserving aggregation */

ClientUpdate (𝐶𝑘 ,𝑾𝑇
𝑘
):

9 𝑎𝑐𝑐 ← (evaluate𝑾𝑇
𝑘

on the local validation data 𝐷𝑣𝑎𝑙
𝑘

)

10 if 𝑎𝑐𝑐 > 𝑎𝑐𝑐𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and 𝑟𝑇
𝑘
< 𝑟𝑡𝑎𝑟𝑔𝑒𝑡 then /* 𝑟𝑇

𝑘
is the

current pruning rate of 𝑘th client’s model,
𝑟𝑡𝑎𝑟𝑔𝑒𝑡 is the target pruning rate */

11 𝑴𝑇+1
𝑘
← (prune𝑾𝑇

𝑘
with the fixed pruning rate 𝑟𝑝 )

12 B ← (split local data 𝐷𝑡𝑟𝑎𝑖𝑛
𝑘

into batches);

13 for each local epoch 𝑖 from 1 to 𝐸 do
14 for batch 𝑏 ∈ B do
15 𝑾𝑇+1

𝑘
←𝑾𝑇

𝑘
⊙ 𝑴𝑇+1

𝑘
− 𝜂∇𝐹𝑘 (𝑾𝑇

𝑘
⊙ 𝑴𝑇+1

𝑘
;𝑏) /* 𝜂

is the learning rate, 𝐹𝑘 (·) is the loss
function */

16 return𝑾𝑇+1
𝑘

, 𝑴𝑇+1
𝑘

to server

the central server sends the updated parameters back to these two

devices, where only the first channel is updated (in green) for both

two devices but the other two channels keep the same. In doing

so, the shared knowledge (e.g., the first channel of Device 𝑖 and
Device 𝑗 ) across devices is aggregated while the personalization

information is retained (e.g., the third channel of Device 𝑖). Details
of the training algorithm for Hermes are presented in Algorithm 1.

4 THEORETICAL ANALYSIS
We theoretically analyze the convergence rate of Hermes. The
analysis shows that Hermes has strong theoretical guarantee of

an exponential convergence rate, which is faster than the that of

status quo. We first introduce some notations and terminologies

that are used in the theoretical analysis. Then we elaborate the

convergence analysis for Hermes. Note that the theoretical analysis
is performed based on the one-step FL scheme like FedAvg, and

hence the derived convergence rate cannot be directly compared to

personalized FL methods that require additional local adaptations

(e.g., Per-FedAvg [12]).

4.1 Notations and Terminologies
Tomake the convergence analysis, we formally describe the training

process of Hermes. Given a communication round, the central
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server first broadcasts the latest model𝑾𝑡
to all the participating

devices. Afterwards, each device (e.g. the 𝑘-th) performs 𝑈 (≥ 1)
steps of local training based on 𝑾𝑡

𝑘
= 𝑾𝑡

. The local update is

performed as:

𝑾𝑡+𝑖+1
𝑘

← 𝑴𝑡+𝑖+1
𝑘

⊙𝑾𝑡+𝑖
𝑘
− 𝜂𝑡+𝑖∇𝐹 𝑡+𝑖𝑘

(𝑴𝑡+𝑖+1
𝑘

⊙𝑾𝑡+𝑖
𝑘
), (4)

where 𝑡 is the index of mini-batch, 𝜂𝑡+𝑖 is the learning rate, and

∇𝐹 𝑡+𝑖
𝑘
(𝑾 ) represents ∇𝑾 𝐹 𝑡+𝑖

𝑘
(𝑾 , 𝐷𝑡+𝑖

𝑘
) where 𝐷𝑡+𝑖

𝑘
is a set of sam-

ples uniformly chosen from the local data. Finally, the server aggre-

gates the local models (i.e., subnetworks)𝑾𝑡+𝑈
1

, ...,𝑾𝑡+𝑈
𝑁

to update

the global model𝑾𝑡+𝑈
.

For the local mask of each device (say the 𝑘-th), it has the fol-

lowing important properties:

∥𝑴𝑡+1
𝑘
∥2 ≤ ∥𝑴𝑡

𝑘
∥2, (5)

𝑴𝑡+1
𝑘
⊙ 𝑴𝑡

𝑘
= 𝑴𝑡+1

𝑘
, (6)

∥𝑴𝐴 ⊙ 𝑴𝑡
𝑘
∥2 ≤ ∥𝑴𝑡

𝑘
∥2 . (7)

In the convergence analysis, we temporally consider 𝑴 as a set,

which contains elements of 1s. We define 𝑴𝑡 =
⋃
𝑖∈S𝑡 𝑴

𝑡
𝑖
, and

𝑴𝐴 ⊖ 𝑴𝐵 = 𝑴𝐴 −𝑴𝐴 ∩𝑴𝐵 .

To facilitate the analysis, we introduce an abstract global model

ˆ𝑾𝑡
in each step of local training:

ˆ𝑾𝑡 =
∑
𝑖∈S𝑡

𝑝𝑖𝑴
𝑡
𝑖 ⊙𝑾

𝑡
𝑖 , (8)

where 𝑝𝑖 represents the weight of each local model during aggre-

gation, and

∑
𝑖∈S𝑡 𝑝𝑖 = 1.

Similarly, we also introduce an abstract local model for each

device (say the 𝑘-th) defined as:

ˆ𝑾𝑡
𝑘
= 𝑴𝑘 ⊙ ˆ𝑾𝑡 + (𝑴𝑡

𝑘
−𝑴𝑡 ) ⊙ ˆ𝑾𝑡−1

𝑘
, (9)

where
ˆ𝑾𝑡
𝑘
can be fetched and equals to 𝑾𝑡

𝑘
when 𝑡 ∈ {𝑚𝑈 |𝑚 =

0, 1, 2, ...}. If we can establish the convergence of Hermes on ˆ𝑾𝑡
𝑘
,

then the convergence of Hermes on𝑾𝑡
𝑘
is guaranteed.

4.2 Convergence Analysis
We conduct the theoretical analysis to show that each personalized

model in Hermes converges to the local optimum. Without loss

of generality, we derive the convergence guarantee considering

the case that all the devices participate in the aggregation, but

the derived convergence guarantee can be easily extended to the

scenario where only a subset of devices are involved. We split the

whole training process into two phases: 1) pruning phase when
the devices keep pruning during local training (i.e., 𝑟𝑡𝑎𝑟𝑔𝑒𝑡 is not

reached yet in Algorithm 1); 2) sparse phase when all the devices

have identified their personalized model structures without the

need of further pruning.

We make the following assumptions on the local masks𝑀𝑘 and

local loss functions 𝐹𝑘 (·). Assumption 1- 2 are common in conver-

gence analysis of gradient descent [31]. Assumption 3 states that

the intersections of model parameters across devices are induced by

the similarity of their local data distributions. Assumption 4 bounds

the value changing among gradients and model parameters, and

Assumption 5 bounds the pruning rate.

Assumption 1. 𝐹1, ..., 𝐹𝑁 are L-smooth:∀𝑽 ,𝑾 , 𝐹𝑘 (𝑽 ) ≤ 𝐹𝑘 (𝑾 )+
(𝑽 −𝑾 )𝑇∇𝐹𝑘 (𝑾 ) + 𝐿2 | |𝑽 −𝑾 | |

2.

Assumption 2. 𝐹1, ..., 𝐹𝑁 are 𝜇-strongly convex: ∀𝑽 ,𝑾 , 𝐹𝑘 (𝑽 ) ≥
𝐹𝑘 (𝑾 ) + (𝑽 −𝑾 )𝑇∇𝐹𝑘 (𝑾 ) +

𝜇
2
| |𝑽 −𝑾 | |2.

Assumption 3. The divergence of the overlapped gradients is
bounded: ∀𝑖, 𝑗, | |𝑴𝑡

𝑖
⊙ ∇𝐹𝑖 (𝑾𝑡

𝑖
) −𝑴𝑡

𝑗
⊙ ∇𝐹 𝑗 (𝑾𝑡

𝑗
) | |2 ≤ 𝐵.

Assumption 4. The value changing among gradients and param-

eters is bounded: ∀𝑖, 𝑗, 𝑀,𝑄 ≤ |
<𝑴⊙∇𝐹𝑖 (𝑾𝑡

𝑖
),𝑾𝑡

𝑗
>

| |𝑴⊙𝑴𝑡
𝑖
| |2<∇𝐹𝑖 (𝑾𝑡

𝑖
),𝑾𝑡

𝑗
>
| ≤ 𝐾.

Assumption 5. The pruning rate for each local training step
is bounded: ∀𝑖, 𝑡, | | (𝑴𝑡+1

𝑖
− 𝑴𝑡

𝑖
) ⊙ 𝑾𝑡

𝑖
| |2 ≤ 𝑃, | | (𝑴𝑡+1

𝑖
− 𝑴𝑡

𝑖
) ⊙

∇𝐹𝑖 (𝑾𝑡
𝑖
) | |2 ≤ 𝐺 .

We define𝑾∗
𝑘
as the optimum of𝑾𝑘 , and 𝐹

∗
𝑘
as the minimum

value of 𝐹𝑘 . We use Γ(𝑘, 𝑡) = ∑
𝑖∈[𝑆𝑡 ]

𝑝𝑖 | |𝑴𝑡
𝑖
⊙ 𝑴𝑡

𝑘
| | for quantifying

similarity of the data distribution between device 𝑘 and the other

devices. In particular, the smaller Γ(𝑘, 𝑡) indicates a higher data het-
erogeneity across devices. Then we have the following convergence

result of pruning phase in Theorem 1.

Theorem 1. Let Assumptions 1-5 hold for Hermes and 𝐿, 𝜇, 𝐵, 𝑄 ,
𝐾 , 𝑃 , 𝐺 be defined therein. Choose 𝜂𝑡 ≤ 𝑄

𝐾𝐿Γ (𝑘,𝑡 ) . Then ∀𝑘 ∈ [𝑁 ],
the device in pruning phase satisfies:

| | ˆ𝑾𝑡+1
𝑘
−𝑾∗

𝑘
| |2 ≤{1 − {𝜂𝑡 [𝜇𝑄Γ(𝑘, 𝑡) − 2] −

1

2

}}| | ˆ𝑾𝑡
𝑘
−𝑾∗

𝑘
| |2

+ 𝜂𝑡 (𝐵 +𝐺) + 𝜂2𝑡 𝐵 + 3𝑃
(10)

Proof. See our proof in Appendix A □

Remark 1. We have three key observations for the pruning phase:
1) It is hard for a device to obtain the optimal model before the other
devices stop pruning; 2) To make𝑾𝑘 close to the local optimum𝑾∗

𝑘
,

each device should keep Γ(𝑘, 𝑡) larger than 2

𝜇𝑄
, which represents the

lower bound of the data distribution similarity between device 𝑘 and
the other devices; 3) The pruning rate 𝑃 should not be too large to
optimize local models during pruning phase.

We assume that the sparse phase starts from the communication

round 𝑇𝑠 , and Γ(𝑘, 𝑡) is fixed to be Γ(𝑘) after 𝑇𝑠 . Then we have the

convergence guarantee of sparse phase in Theorem 2.

Theorem 2. Let Assumptions 1-5 hold for Hermes and 𝐿, 𝜇, 𝐵, 𝑄 ,
𝐾 , 𝑃 ,𝐺 be defined therein. Choose 𝜂𝑡 = 𝜂𝑠 ≤ 𝑄

𝐾𝐿Γ (𝑘) . Then ∀𝑘 ∈ [𝑁 ],
𝑇 > 𝑇𝑠 , the device in sparse phase satisfies:

𝐹𝑘 (𝑾𝑇
𝑘
) − 𝐹 ∗

𝑘
≤ 𝐿

2

(1 − 𝜂𝑠𝑅𝑘 )𝑈 (𝑇−𝑇𝑠 ) [𝐹𝑘 (𝑾𝑇𝑠
𝑘
) − 𝐹 ∗

𝑘
− 𝑍𝑘 ] +

𝐿

2

𝑍𝑘

(11)

where

𝑍𝑘 =
𝐵

𝜇𝑄Γ(𝑘) − 1 (1 +
𝑄

𝐾𝐿Γ(𝑘) )

𝑅𝑘 = 𝜇𝑄Γ(𝑘) − 1
(12)

Proof. See our proof in Appendix B □
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Table 1: Statistical information of datasets.

Dataset Number of devices Classes Non-IID

EMNIST [8] 2414 64 ✓
CIFAR10 [26] 400 10 ✓
HAR [3] 30 6 ✓

Remark 2. By choosing 𝜆𝑠 ≤ 𝑅𝑘 , the devices inHermes can achieve
an exponential convergence rate, which is faster than the convergence
rate of FedAvg (i.e., O( 1

𝑇
)) presented in [31]. We observe that the

lower bound of optimal local loss 𝐹 ∗
𝑘
+ 𝐿

2
𝑍𝑘 varies across devices.

This lower bound is negatively correlated with Γ(𝑘) as shown in 𝑍𝑘 ,
which implies that the more closely one device’s data distribution is
similar to the other devices’ data distributions, the smaller local loss
this device can obtain by participating in federated training.

5 EVALUATIONS
5.1 Applications, Datasets, and Models
To show the generality of Hermes across applications, we employ

Hermes to develop two representative mobile AI applications that

benefit significantly from FL. The statistics of the datasets that

are applied to build these applications are summarized in Table 1.

We follow the non-IID configurations in [29] to build the non-IID

datasets.

Application#1: Image Classification (IC). Image classification

is a popular computer vision application. With the advancement of

the computation power, it has become attractive to deploy image

classification applications on mobile devices. In this work, we use

VGG16[45] as the base model for training, and EMNIST [8] and

CIFAR10 [26] datasets for training and evaluation. EMNIST is a

handwriting image classification dataset grouped by the writers.

Hence, we can naturally distribute onewriter’s images to one device.

In this application, we sample 2414 writers’ data and distribute them

to devices. For CIFAR10, each device holds 2-class data and this two

classes can be varied across devices. In addition, the data volume

of each class is unbalanced on a device. The test data follows the

same distribution as the training data.

Application#2: Human Activity Recognition (HAR). Human

activity recognition has become an attractive feature for smart-

phones using data collected from different types of on-board sen-

sors, such as accelerometer, gyroscope, etc. This application aims to

recognize activities performed by an individual based on the sensor

data. To build this application, we use the HAR [3] dataset which

collects smartphone accelerometer and gyroscope data from 30 in-

dividuals. HAR consists of six labeled activities: walking, walking-

upstairs, walking-downstairs, sitting, standing, and lying-down. As

a result, we distribute each individual’s data to one device. We em-

ploy a 3-layer fully connected neural network to recognize human

activities.

5.2 System Implementation
We implemented Hermes and three FL applications on Google Pixel

3 (CPU) smartphones running Android 9.0, based on PyTorch 1.5.

The central server is equipped with an Intel Xeon E5-2630@2.6GHz

and 128G RAM. We used Monsoon power monitor [38] to measure

the power consumption at runtime. For the baselines and Hermes,
we adopt a FL protocol which randomly feeds 20 data shards that

are partitioned as described in §5.1 to each smartphone in each

communication round, i.e., 20 participating devices per communica-

tion round. Each participating device performs 𝐸 = 5 local training

epochs for one communication round. In addition, we set the prun-

ing rate 𝑟𝑝 as 0.2, 𝐵 = 16, 𝑎𝑐𝑐𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.5, and 𝑟𝑡𝑎𝑟𝑔𝑒𝑡 = 0.3 in

Algorithm 1. The model configurations for each application are

presented in Table 4 (Appendix C).

5.3 Experimental Setup
Baselines. To make fair comparison, we compare Hermes with
five baselines:

• Standalone trains a model locally using local data only by

each device. Note that we provide the same total training

time for Standalone method as Hermes. Since Standalone
method does not have to pay for the communication over-

head, the number of the local training epochs in Standalone

will be greater than that of Hermes.

• FedAvg [36] is the most classical FL method. Devices com-

municate updated local parameters to the central server and

download the aggregated global model for continuous local

training.

• Top-k [1] is a sparsification method to compress the com-

municated gradients by selecting the largest 𝑘 elements of

the gradients. Here we set 𝑘 as 10%.

• Per-FedAvg [12] incorporates MAML [13] into FedAvg for

personalization. Per-FedAvg first finds an initial sharedmodel

and then each devices can adapt this shared model to their

local data by performing a few steps of gradient descent.

• LG-FedAvg [32] is the state-of-the-art FL method that im-

proves personalization and communication efficiency simul-

taneously. This is done by jointly learning compact local

representations on each device and a shared global model.

Besides, for each application, we adopt the same base model con-

figuration for each baseline method as Hermes. Training settings
and data configurations of baseline methods are set the same as

Hermes. The results are reported after the same number of training

epochs except for Standalone.

Evaluation Metrics. We use two sets of metrics to evaluate

training and runtime performance respectively:

• Metrics for Training Performance: (1) inference accuracy:
we evaluate the inference accuracy on each device’s test data,

and report the average accuracy over all devices for evalua-

tions; (2) communication cost: we measure the time cost of

communication including both uploading and downloading

during training, and normalize it as the ratio to the commu-

nication time of FedAvg as reported communication cost.

• Metrics for Runtime Performance: (1)memory footprint:
we measure the memory footprint of different applications

on devices, and calculate the memory footprint reduction;

(2) inference latency: we measure the average time cost of

performing one inference and calculate the inference time

reduction percentage; (3) energy consumption: we measure
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Figure 6: Comparison of convergence speed between FedAvg and Hermes.
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Figure 7: Comparison between Hermes and baselines in inference accuracy-communication cost space.

the average energy consumption per inference and calculate

the energy consumption saving percentage.

5.4 Convergence Speed
To verify our theoretical analysis, we compare the convergence

speed of Hermes with that of FedAvg and Top-k. In particular, the

training curves of these three methods are presented in Figure 6.

The results show thatHermes (red curve) not only converges signif-
icantly faster than FedAvg (green curve) and Top-k (blue curve) but

also achieves consistently better performance (i.e., smaller training

loss) in all three applications.

5.5 Inference Accuracy vs. Communication
Cost

Figure 7 compares Hermes with the baselines in the inference

accuracy-communication cost space. Even though Hermes can-
not always outperform baselines in both inference accuracy and

communication cost, it offers the best tradeoff between inference

accuracy and communication cost.

First, compared to the state-of-the-art method LG-FedAvg, Her-
mes is able to achieve higher inference accuracy and lower commu-

nication cost simultaneously. Hermes improves inference accuracy

by 8.93%, 3.23%, and 0.53% on IC-CIFAR10, IC-EMNIST, and HAR,

respectively. Meanwhile, it also saves 1.96×, 1.92×, and 1.96× com-

munication cost in these applications, respectively.

Second, compared to Per-FedAvg that is specifically designed

for personalization, Hermes is able to dramatically reduce com-

munication cost. In particular, Hermes reduces 3.05×, 3.25×, and
3.48× communication cost on IC-CIFAR10, IC-EMNIST, HAR, and

NCP, respectively. More surprisingly, Hermes also achieves a signif-
icant improvement in inference accuracy. The inference accuracy

increases by 12.55%, 3.46%, and 0.6%, respectively.

Third, Top-k shows the most significant communication reduc-

tions on the three developed applications. Compared to Hermes,
Top-k offers 0.67×, 0.63×, 0.67×, 3.36× savings in communication

cost on IC-CIFAR10, IC-EMNIST, and HAR, respectively. However,

Hermes significantly outperforms Top-k in inference accuracy, in-

creasing inference accuracy by 32.17%, 8.71%, and 2.39%.
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on Hermes performance.

As FedAvg is a general FL method without specific optimiza-

tions for communication and personalization, Hermes significantly
outperforms FedAvg in terms of both inference accuracy and com-

munication cost as expected. Although Standalone does not incur

any communication cost, it shows substantially worse performance

compared to Hermes due to only local training with limited data

samples on each device.

5.6 Hyper-Parameter Evaluation
Number of Participating Devices:We evaluate the impact of the

number of participating devices in each communication round on

the Hermes performance. We conduct experiments on IC-EMNIST

and IC-CIFAR10 by varying the number of participating devices

with {20, 40, 80}. As Figure 8 shows, the inference accuracy has a

slight improvement with a larger number of participating devices in

each communication round. For example, the inference accuracy on

IC-CIFAR10 increases by 1.75% when the number of participating

devices increases from 20 to 80. However, such a larger number of

participating devices incurs 4× bandwidth usage, which diminishes

the benefit of the slight accuracy improvement.

Data Volume and Unbalance Rate: The data volume on devices

is a critical hyper-parameter that significantly impacts the perfor-

mance of FL methods. In practice, there exist some challenging sce-

narios where the data volume is extremely limited. Besides limited

data, it is also common that data on a device shows unbalance across

different classes. The limited and unbalanced data raise challenges

for FL methods to train personalized models achieving equally

high performance on different classes. To evaluate the impact of

data volume and the degree of unbalance on Hermes performance,

we conduct experiments on IC-CIFAR10. In this experiment, each

device holds 2-class data, and we define balance rate as the ratio
between the data volume of one class and the counterpart of the

other class. Therefore, the lower value of balance rate indicates the

higher degree of unbalance. We keep each device holding 2-class

data, but vary the volume of data with {5, 10, 20} samples/class

and the balance rate with {1, 0.75, 0.5, 0.25}. Note that the data is

balanced when setting the balance rate as 1. As Figure 9 illustrates,
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Figure 9: The impact of data volume and balance rate on
Hermes performance (IC-CIFAR10).

given the same volume of data, the inference accuracy has a slight

drop when the balance rate becomes smaller. For example, with

setting the data volume as 20 samples/class, the inference accuracy

decreases from 84.35% to 83.67% when varying the balance rate

from 0.75 to 0.5. In addition, given the same balance rate, the infer-

ence accuracy slightly degrades with a decreasing volume of data.

For example, with setting the balance rate as 0.75, the inference

accuracy decreases by only 0.92% when changing the data volume

from 10 samples/class to 5 samples/class. The above results demon-

strate that Hermes can also effectively handle very challenging

settings.

Target Pruning Rate: The target pruning rate 𝑟𝑡𝑎𝑟𝑔𝑒𝑡 determines

the degree of the subnetwork’s sparsity on the device, i.e., a smaller

𝑟𝑡𝑎𝑟𝑔𝑒𝑡 results in a more compact subnetwork and a larger 𝑟𝑡𝑎𝑟𝑔𝑒𝑡
leads to a more dense subnetwork, and hence the 𝑟𝑡𝑎𝑟𝑔𝑒𝑡 impacts

both communication cost and inference accuracy. To evaluate the

impact of 𝑟𝑡𝑎𝑟𝑔𝑒𝑡 on Hermes performance, we conduct experiments

on IC-CIFAR10 and IC-EMNIST by varying the 𝑟𝑡𝑎𝑟𝑔𝑒𝑡 with {0.3,

0.5, 0.8}. In this experiment, we measure the volume of commu-

nicated data including both uploading and downloading as the

communication cost, and normalize it as the ratio to the volume

of communicated data when setting 𝑟𝑡𝑎𝑟𝑔𝑒𝑡 = 0.8 as the reported

communication cost. As Table 2 presents, the inference accuracy

has a marginal drop when the 𝑟𝑡𝑎𝑟𝑔𝑒𝑡 becomes smaller, but the

communication cost can be significantly reduced. For example, the

inference accuracy marginally decreases from 86.35% to 85.72%

when varying the 𝑟𝑡𝑎𝑟𝑔𝑒𝑡 from 0.8 to 0.3 on IC-CIFAR10, but the

communication cost can be reduced by 46%.

5.7 Runtime Performance
Reduction of Memory footprint: One key benefit of applying

Hermes is that each device can obtain a structured sparse and

personalized model for deployment. To quantify the benefit of

structured sparsity on reducing memory footprint, we compare the

model size between the model learned via applying Hermes and
the ones trained using the baselines. Note that the models learned
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Table 2: The impact of target pruning rate on Hermes
performance.

Application rtarget Accuracy Communication Cost

IC-CIFAR10

0.3 85.72% 0.54

0.5 85.91% 0.79

0.8 86.35% 1

IC-EMNIST

0.3 91.24% 0.53

0.5 91.35% 0.75

0.8 91.66% 1

Table 3: Memory footprint reduction of Hermes.
(𝑟𝑡𝑎𝑟𝑔𝑒𝑡 = 0.3)

Application
Hermes

Model Size
(MB)

Baseline
Model Size

(MB)

IC-CIFAR10 161.16 537.21

IC-EMNIST 161.43 538.09

HAR 1.32 4.41

All Included 323.91 1081.24

using the baselines are dense neural networks and share the same

model size.

Table 3 lists comparison of the memory footprint across all the

applications. Compared to the other baselines, Hermes is able to
significantly reduce the memory footprint. For example, Hermes
can save 376.05MB on memory footprint in IC-MNIST, which is

equivalent to 70% of the memory footprint by the baseline model.

In addition, considering to deploy all the application applications

concurrently on smartphones, Hermes achieves 757.33MB memory

footprint reduction in total, showing the strong applicability of

Hermes in practice.

Inference Speedup: The structured sparsity of the model learned

using Hermes also introduces a significant speedup on inference.

To quantify this benefit, we compare the average inference latency

between the model learned using Hermes and the ones trained by

the baselines. As Figure 10 illustrates, compared with the baselines,

Hermes is able to achieve 1.83×, 1.79×, and 1.82× inference speedup
on IC-CIFAR10, IC-EMNIST, and HAR respectively.

Reduction on Energy Consumption: Besides reducing memory

footprint and inference latency, Hermes also saves more energy

compared to the baselines. In this experiment, we compare the

average energy consumption per inference across all the appli-

cations between Hermes and the baselines. As Figure 11 shows,

Hermes is able to save 1.8×, 1.76×, and 1.78× energy consumption

on IC-CIFAR10, IC-EMNIST, and HAR respectively.

6 DISCUSSION
Generality of Hermes. In this work, we apply Hermes to de-

velop two representative applications using three non-IID datasets

(as presented in Table 1). However, Hermes can be generalized

to develop many other popular mobile AI applications. For ex-

ample, we can apply Hermes to build next-character prediction
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application on smartphones using text datasets (e.g., Sentiment140,

Shakespeare) [7]. In this sense, Hermes is a generic framework for

achieving personalized and efficient FL.

Defending Against Privacy Leakage. Privacy preservation is

the major motivation for proposing FL. However, recent works

demonstrated that sharing model updates or gradients also makes

FL vulnerable to inference attack, e.g., property inference attack [37]

andmodel inversion attack [15, 16, 52, 57]. Recent study [48] reveals

the essential cause of privacy leakage in FL – data representations

of each device’s local data are embedded in communicated local

model updates and such data representations can be inferred to

perform model inversion attacks. In Hermes, only subnetworks

(e.g., a small portion of the local model) are communicated between

devices and the central server, i.e., some gradients have been pruned

on the device and partial information of local data has been hidden.

This indicates that Hermes could potentially help to defend against

the privacy leakage in FL, and we plan to evaluate the effectiveness

of Hermes in such defenses in the future work.
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7 RELATEDWORK
Communication-Efficient Distributed Deep Learning. Com-

munication cost is one the major bottlenecks of distributed deep

learning. Many works have been done to improve the communi-

cation efficiency by reducing the volume of transmitted data (i.e.,

gradient or weights). These prior arts can be divided into three main

classes: (1) quantizationmethods [2, 6, 9, 19, 24, 44, 54, 55] compress

the communication by reducing the number of bits of each element

in the transferred data; (2) sparsificationmethods [1, 11, 21] transmit

only a subset of elements in the communicated data; (3) hybridmeth-

ods [5, 22, 33, 47] combine quantization with sparsification. There

are twomajor quantization schemes: limited-bit and codebook-based.
The limited-bit quantization method [6, 9] maps each gradient ele-

ment to fewer bits, and the codebook-based approach [2] projects

the gradient coordinates into predefined code-words. For example,

Dettmers et al. [9] design a limited-bit technique to map each float32

element of the gradients to 8 bits. Similarly, SignSGD [6] is another

typical limited-bit method, where the sign of each gradient element

is transmitted by mapping the negative element to -1 and the others

to 1. Alistarh et al. propose QSGD [2], which is codebook-based

quantization scheme, to quantizes each element of the gradients

via randomized rounding to a discrete set of code-words that pre-

serve the statistical properties of the original gradients. In terms

of sparsification methods, the core idea is to select a subset of the

gradients to transmit. Therefore, there are many selection criteri-

ons have been proposed for improving the sparsification. Top-𝑘 [1]

is a sparsification method to select the 𝑘 largest elements of the

gradients. Unlike Top-𝑘 where the number of selected elements is

fixed, Threshold-𝑣 [11] selects the elements which are larger than a

predefined threshold value, hence, the number of selected elements

is adapted during runtime. Ivkin et al. propose Sketched-SGD [21],

which adopts count-sketch to approximate the top-𝑘 elements of

the gradients. In addition, hybrid methods have been proposed via

combing quantization with sparsification. For example, Basu et al.
propose a hybrid method [5] by combining quantization with Top-𝑘

or Random-𝑘 sparsification.

In addition to these data compression based methods, federated

submodel learning is another scheme for improving communica-

tion efficiency. In general, each participating device only trains and

transmits a submodel given a shared global model. FedMA [50]

proposes a layer-wise matching scheme by exploiting the model ar-

chitecture. In particular, FedMA updates a layer of the global model

each time using the matched averaging, which reduces the size of

communicated data. HeteroFL [10] adaptively allocate submodels

to devices based on their varying computation and communication

capabilities, and hence it can improve communication and compu-

tation efficiency in federated training. Our work also aims to reduce

communication cost by exploiting the submodel learning scheme,

but the submodel is learned using local data in Hermes with taking

the data heterogeneity into account.

Personalization for FL. Due to statistical heterogeneity (i.e., non-
IID data distribution across clients), it is necessary to adapt the

globalmodel to achieve personalization.Most existingworks achieve

personalization in two separate steps that are associated with extra

overhead: 1) a global model is learned in a federated fashion, and

2) the global model is fine-tuned for each client using the local

data. There are three primary categories of methods for adapting

global model to personalized models: local fine-tuning, multi-task
learning, and contextualization. The local fine-tuning is the domi-

nant approach for personalization [12, 23, 25, 51], where each client

tunes a global model using its own local data with several gradient

descent steps. Jiang et al. [23] analyze the similarity between Fe-

dAvg [36] and Reptile [39] which is a meta-learning method. They

observe that only optimizing the performance of global model could

limit the global model’s capacity for personalization. Based on the

observation, they propose to combine meta learning with FL for

personalizing local models. Fallah et al. propose Per-FedAvg [12] by
incorporating MAML [13] into FL for personalization, where each

local model is fine-tuned by using the second-order information to

update the global with several gradient descent steps.Khodak et al.
design ARUBA [25], which is a meta learning algorithm based on

online convex optimization to improve the personalization in FL.

In addition to the above meta-learning based approaches, transfer

learning has also been applied to FL for personalization. Wang et
al. [51] and Arivazhagan et al. [4] propose methods to fine-tune

some or all parameters of a trained global model using each client’s

local data. Besides, we can also consider the personalization prob-

lem in FL as a multi-task learning problem. Smith et al. propose
MOCHA [46], which is a multi-task learning approach to learn per-

sonalized federated models. Integrating contextualization with FL

is another approach for personalization, Masour et al. [35] propose
a method to add user context to FL, which first clusters users based

on the some features (e.g., region) and then train a separate model

for each group. Sattler et al. [43] integrate hierarchical clustering
into FL by using a bi-partitioning algorithm to group clients into

clusters. Huang et al. [20] present a community-based FL to predict

patient hospitalization time and mortality. But such contextualiza-

tion methods often incur high computation and communication

costs, leading to limited feasibility in practice. In contrast, Hermes
achieves personalization by learning the heterogeneous subnetwork

in an end-to-end manner with jointly optimizing communication

and computation efficiency.

8 CONCLUSION
In this paper, we present the design, implementation and evaluation

of Hermes, a FL framework that significantly improves commu-

nication and inference efficiency simultaneously while achieving

personalization under data heterogeneity. By applying Hermes,
each device learns a personalized and structured sparse DNNmodel

rather than a shared global model. Hermes incorporates the struc-
tured pruning into the local training, each device learns a sparse

subnetwork and only the parameters of subnetwork are communi-

cated between devices and the central server. The aggregation strat-

egy is carefully designed to average only the intersected parameters

across subnetworks, such that the personalization of subnetworks

can be preserved. We evaluate Hermes using two representative FL

applications on three benchmark datasets. Our results demonstrate

that Hermes significantly outperforms the state-of-the-art meth-

ods in inference accuracy, communication cost, memory footprint,

inference latency, and energy consumption. We believe Hermes
represents a significant step towards the realization of efficient FL

under heterogeneous mobile clients.
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A PROOF OF THEOREM 1
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where the first inequality results from the convexity of ∥.∥2,
the second inequality results from the shrinking property 5 of

local mask, the third inequality results from Assumption 3 and the

convexity of ∥.∥2, the forth inequality results from Assumption 4

and 𝑝𝑖 ≤ 1.
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local mask, the forth inequality results from Assumption 5.

By combining 20, 28 and 35, we have
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We next focus on 𝐵1 − 1. We split 𝐵1 − 1 into two terms:
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where the first inequality results from Assumption 4, the second

inequality results from the 𝜇-convexity of 𝐹𝑘 , Cauchy-Schwarz

inequality and AM-GM inequality.
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We next focus on 𝐵1 − 2. By Assumption 5, Cauchy-Schwarz

inequality and AM-GM inequality, we have

(𝑴𝑡
𝑘
⊙ 𝑴𝑡

𝑘
−𝑴𝑡+1

𝑘
⊙ 𝑴𝑡+1

𝑖 ) ⊙
∑
𝑖∈[𝑁 ]

𝑝𝑖𝜂𝑡∇𝐹 𝑡𝑖 (𝑾
𝑡
𝑖 ) (53)

, ˆ𝑾𝑡
𝑘
−𝑾∗

𝑘
> (54)

≤ 1
2

𝜂𝑡𝐺 +
1

2

𝜂𝑡 ∥ ˆ𝑾𝑡
𝑘
−𝑾∗

𝑘
∥2 (55)

By combining 43, 46, 49, 52 and 55, we have

𝐵1 ≤ − 𝜂𝑡𝑄Γ(𝑘, 𝑡) [(𝐹 𝑡𝑘 (𝑾
𝑡
𝑘
) − 𝐹 ∗

𝑘
)] (56)

− 𝜂𝑡
2

[𝜇𝑄Γ(𝑘, 𝑡) − 2] ∥ ˆ𝑾𝑡
𝑘
−𝑾∗

𝑘
∥2 + 𝜂𝑡

2

(𝐵 +𝐺) (57)

We next focus on 𝐵2. By apply Cauchy-Schwarz inequality and

AM-GM inequality, we have

𝐵2 = < 𝐶2, ˆ𝑾𝑡
𝑘
−𝑾∗

𝑘
> (58)

≤ 1
2

(2∥𝐶2∥2 + 1

2

∥ ˆ𝑾𝑡
𝑘
−𝑾∗

𝑘
∥2) ≤ 𝑃 + 1

4

∥ ˆ𝑾𝑡
𝑘
−𝑾∗

𝑘
∥2 (59)

where the second inequality results from Assumption 5.

By combining 40, 57 and 59, we have

𝐵 ≤ − 2𝜂𝑡𝑄Γ(𝑘, 𝑡) [(𝐹 𝑡𝑘 (𝑾
𝑡
𝑘
) − 𝐹 ∗

𝑘
)] + 𝜂𝑡 (𝐵 +𝐺) + 2𝑃 (60)

− 𝜂𝑡 {[𝜇𝑄Γ(𝑘, 𝑡) − 2] −
1

2

}∥ ˆ𝑾𝑡
𝑘
−𝑾∗

𝑘
∥2 (61)

By choosing 𝜂𝑡 ≤ 𝑄

𝐾𝐿Γ (𝑘,𝑡 ) , we have

2𝜂2𝑡𝐾𝐿(𝐹 𝑡𝑘 (𝑾
𝑡
𝑘
) − 𝐹 ∗

𝑘
) − 2𝜂𝑡𝑄Γ(𝑘, 𝑡) [(𝐹 𝑡𝑘 (𝑾

𝑡
𝑘
) − 𝐹 ∗

𝑘
)] ≤ 0 (62)

By combining 37, 61 and 62, we have

| | ˆ𝑾𝑡+1
𝑘
−𝑾∗

𝑘
| |2 ≤{1 − {𝜂𝑡 [𝜇𝑄Γ(𝑘, 𝑡) − 2] −

1

2

}}| | ˆ𝑾𝑡
𝑘
−𝑾∗

𝑘
| |2

+ 𝜂𝑡 (𝐵 +𝐺) + 𝜂2𝑡 𝐵 + 3𝑃
(63)

□

B PROOF OF THEOREM 2
To convey our proof clearly, we introduce the following lemma in

sparse phase. We defer the proof of this lemma after proving the

main theorem.

Lemma 1. Choose 𝜂𝑠 ≤ 𝑄

𝐾𝐿Γ (𝑘,𝑡 ) in sparse phase, we have

| | ˆ𝑾𝑡+1
𝑘
−𝑾∗

𝑘
| |2 ≤{1 − {𝜂𝑠 [𝜇𝑄Γ(𝑘) − 1]}}| | ˆ𝑾𝑡

𝑘
−𝑾∗

𝑘
| |2

+ 𝜂𝑠𝐵(1 +
𝑄

𝐾𝐿Γ(𝑘) )
(64)

Proof. We let △𝑡 = | | ˆ𝑾𝑡
𝑘
−𝑾∗

𝑘
| |2. From Lemma 1, it follows that

△𝑡 + 1 ≤ (1 − 𝜂𝑠𝑅𝑘 )△𝑡 + 𝜂𝑠𝐻𝑘 , (65)

where

𝑅𝑘 = 𝜇𝑄Γ(𝑘) − 1 (66)

𝐻𝑘 = 𝐵(1 + 𝑄

𝐾𝐿Γ(𝑘) ) (67)

From 69, it follows that

△𝑡 + 1 − 𝐻𝑘
𝑅𝑘
≤ (1 − 𝜂𝑠𝑅𝑘 ) (△𝑡 −

𝐻𝑘

𝑅𝑘
), (68)

Then we have

| |𝑾𝑘,𝑇 −𝑾∗𝑘 | |
2 − 𝐻𝑘

𝑅𝑘
≤ (1 − 𝜂𝑠𝑅𝑘 )𝐸 (𝑇−𝑇𝑠 ) ( | |𝑾𝑘,𝑇𝑠 −𝑾

∗
𝑘
| |2 − 𝐻𝑘

𝑅𝑘
) .

(69)

By the 𝐿-smoothness of 𝐹𝑘 ,
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𝐹𝑘 (𝑾𝑘 ,𝑇 ) − 𝐹 ∗𝑘 ≤
𝐿

2

| |𝑾𝑘,𝑇 −𝑾∗𝑘 | |
2

(70)

≤𝐿
2

(1 − 𝜂𝑠𝑅𝑘 )𝐸 (𝑇−𝑇𝑠 ) ( | |𝑾𝑘,𝑇𝑠 −𝑾
∗
𝑘
| |2 − 𝑍𝑘 ) +

𝐿

2

𝑍𝑘 . (71)

where

𝑍𝑘 =
𝐻𝑘

𝑅𝑘
=

𝐵

𝜇𝑄Γ(𝑘) − 1 (1 +
𝑄

𝐾𝐿Γ(𝑘) ) (72)

□

Proof of Lemma 1. To prove Lemma 1, it is necessary to introduce

a key property of local mask in sparse phase (𝑡 > 𝑇𝑠 ∗ 𝐸):

𝑴𝑡+1
𝑘

= 𝑴𝑡
𝑘

(73)

Proof. From the property 73, it follows that 𝐴2, 𝐵1 − 2 and 𝐵2
would be zero. Then by applying new bounds of 𝐴2, 𝐵1 − 2 and 𝐵2
in 63 and choosing 𝜂𝑠 ≤ 𝑄

𝐾𝐿Γ (𝑘,𝑡 ) in sparse phase, we have

𝐹𝑘 (𝑾𝑘,𝑇 ) − 𝐹 ∗𝑘 ≤
𝐿

2

(1−𝜂𝑠𝑅𝑘 )𝑈 (𝑇−𝑇𝑠 ) [𝐹𝑘 (𝑾𝑘,𝑇𝑠 ) − 𝐹
∗
𝑘
−𝑍𝑘 ] +

𝐿

2

𝑍𝑘

(74)

where

𝑍𝑘 =
𝐵

𝜇𝑄Γ(𝑘) − 1 (1 +
𝑄

𝐾𝐿Γ(𝑘) )

𝑅𝑘 = 𝜇𝑄Γ(𝑘) − 1
(75)

□

C EXPERIMENT SETUP

Table 4: Model configurations.

IC-CIFAR10 IC-EMNIST HAR

Conv 3-6 Conv 1-10 FC-300

Maxpool Maxpool FC-100

Conv 6-16 Conv 10-20 FC-6

Maxpool Maxpool Softmax

FC-120 FC-512

FC-84 FC-62

FC-10 Softmax

Softmax
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